Make Your Exams More Secure by Using Question Banks

As many classes and exams migrate online, many professors are increasingly concerned about an uptick in cheating. Preliminary numbers indicate those concerns are valid. In August 2020, Derek Newton in The Hechinger Report disclosed that at North Carolina State University, for example, 200 students in

Read More »

Student Peer Review and Learning

Sometimes it’s good to step back and take a look at something from a distance. Meta-analyses provide some of that perspective. They take a bundle of individual studies, combine their findings, and offer an empirical view of a phenomenon—in this instance, students reviewing their peers.

Read More »

Rethinking the Rules of Online Discussion

One of the hallmarks of online learning is that students can engage in deeper discussion than they can in most face-to-face courses due to the additional think-time for crafting posts and responding to others. But many online instructors report disappointment in class discussions because students

Read More »

Improving the Quality of Machine-Gradable Questions

Tests provide one measure of our students’ learning according to the standards of the instructor and the field. But tests also affect our students socially, emotionally, and financially and influence their science-minded identities for years to come. We owe it to students to create fair

Read More »

An Update on Study Strategies

A number of resources that we’ve published address student study strategies, particularly the ones they don’t use that research says do connect to learning. (See the links at the end of the article.) In a nutshell, students gravitate toward passive study strategies, and those don’t

Read More »

Digital Drawing Tools for Online Teaching

Digital drawing tools are a powerful yet underused resource for online educators. They are helpful in quantitative courses with equations, art and other classes that are heavy on visual analysis, and interactive sessions such as videoconferences.

Read More »

Finding Course Design Flaws

In the rural part of North Central Pennsylvania where I live, a lot of families have owned the same farmland for generations. Houses are handed down, with each new family adjusting the home to their needs—adding a porch here, a back bedroom there, an attachment

Read More »

Concept Maps: Engaging Students to Make Meaning

Making meaning is the key to deep understanding. One instructional strategy that helps students reach understanding is concept maps. Concept maps display information through various forms, including charts, timelines, tables, and graphic organizers.The benefits of concept maps include aiding students in establishing relationships between ideas,

Read More »

Embodied Education: Teaching through Movement

If you were to compare the average college class with the average elementary school class, one thing you would immediately notice is that college students almost never move around after they have sat down, whereas elementary classes often involve hands-on activities that require movement. There

Read More »

Teaching Swimming or Coaching Swimmers?

A question has been floating around in my head since I started teaching college students: are we supposed to act like swimming instructors or Olympic coaches? The analogy is not as odd as it might seem at first. Don’t we talk about whether students “sink

Read More »
Archives

Get the Latest Updates

Subscribe To Our Weekly Newsletter

Magna Digital Library
wpChatIcon

As many classes and exams migrate online, many professors are increasingly concerned about an uptick in cheating. Preliminary numbers indicate those concerns are valid. In August 2020, Derek Newton in The Hechinger Report disclosed that at North Carolina State University, for example, 200 students in a single statistics class of 800 were caught cheating.

The unfortunate reality is that whenever exams are required, there will be some students who try to cheat. Teachers should work to create exams that reduce students’ ability and incentives to do so. Randomizing the order of questions and answers is a good start but insufficient by itself. Some learning management systems (LMSs), such as Canvas, have additional built-in tools that can make exams more secure.

One of those tools, question banks, can be a reliable way for professors to create flexible and secure exams. We define a question bank as a collection of multiple-choice questions and answers. They can be created in a variety of ways—by individual professors, by teaching teams, or, in prepackaged form, by textbook authors, for example.

We recommend that professors consider creatively organizing their question banks, especially if their LMS empowers them to randomly select a specified number of questions from individual banks. To illustrate the flexibility and increased security multiple question banks can provide, let’s consider several exam formats that each consist of 50 questions selected from a set of 100 total questions. There are many ways those 100 questions might be chosen for an exam. The only real difference between the examples discussed below is the way these questions are organized into various banks.

“A normal exam”

This is the standard midterm or final exam prepared by most professors. The professor selects which 50 of the 100 available questions will appear on every exam. Thinking in terms of question banks, this exam format has a single bank with 50 questions, and the exam generator selects all of them in random order. As a result, each student receives the same 50 questions. The concern for this setup is that it provides a high incentive as well as a high reward for cheating. If Student A tells Student B that a specific question appeared on their exam, Student B has a 100 percent chance of receiving that same question.

One expanded test bank

Consider, though, a slightly modified exam format. It also uses a single question bank, except this time all 100 of the available questions are included in that bank. Rather than having the professor preselect which questions will appear on every exam, the automated exam generator selects 50 questions at random from the 100 questions in the bank for each student. It is unlikely that any two exams would be the same. Student A may still tell Student B that a specific question was on their exam, but there is a good chance Student B will not receive that same question. Suffice it to say that doubling the number of questions in a single bank has an astounding effect on the number of possible question combinations. Doubling the number of questions from 50 to 100—but still selecting 50 questions—increases the number of possible exam formats from 1 to an incredibly large number. (Believe it or not, that number is 100,891,344,545,564,000,000,000,000,000.[1])

A possible downside to using a “single question bank” approach is that some exams generated may overemphasize certain learning goals or units while deemphasizing or eliminating others. Students may also receive exams with varying degrees of difficulty because of the way questions from the bank were randomly selected. There is an easy way to correct this weakness, however.

Multiple question banks

The solution is to use several narrowly defined question banks. The professor might create separate question banks for each unit or learning objective to test the course content more evenly. Let’s imagine our hypothetical 100-question set contains questions about five units in our course. We could create five different question banks that include 20 questions from each unit. The exam generator would randomly select 10 questions from the five unit-level question banks, thereby guaranteeing that each student would receive the same number of questions from every unit in the course.

Since questions are randomly chosen, there would be over 13 trillion ways questions from each bank could be selected. When using five banks in this manner, the number of possible tests that could be generated increases to 13 trillion multiplied by 5!

If you wish to carry this concept to the extreme, you could organize those same 100 questions into 50 different banks with two questions each. It is important, of course, to ensure that questions within each bank are of equal difficulty.

Hybrid approach

To create an ideal customized exam, you might use a combination of the approaches mentioned above. Your 50-question exam might look something like this:

As remote learning continues, you may wish to consider using a variety of question bank strategies to enhance the flexibility and security of your exams.

[1] Here is a brief math review: A factorial, written with an exclamation point, is the result of multiplying the whole numbers from 1 to the number in question. For example, 3! = 1 * 2 * 3 = 6. 4! = 24, 5! = 120, and so on. When you have x questions in a question bank and select fewer questions than that number, there are multiple ways to select the questions. With a three-question bank, you could pick “1,2,” “2,3,” or “1,3.” The formula defining how many question combinations there are in an individual question bank is “C(n,r) = n! / (r! ( (n – r)!),” where n is the number of questions in a question bank and r is the number of questions chosen for an exam.

Reference

Newton, D. (2020, August 7). Another problem with shifting education online: Cheating. The Hechinger Report. https://hechingerreport.org/another-problem-with-shifting-education-online-cheating


Michael L. Shamo, PhD, has worked as a public history researcher at the University of Utah’s American West Center and for the Church History Department of The Church of Jesus Christ of Latter-day Saints. He currently teaches courses on American history at Utah Valley University and Brigham Young University.

Kenneth L. Alford, PhD, is a professor of church history and doctrine at Brigham Young University. After almost 30 years in the U.S. Army, he retired as a Colonel in 2008. He previously served as a professor at the U.S. Military Academy at West Point and a department chair at the National Defense University in Washington, DC.